๋ฐ˜์‘ํ˜•

๋งฅ์Šคํ’€๋ง 1

[๋”ฅ๋Ÿฌ๋‹] ์ด๋ฏธ์ง€ ์ธ์‹ , ์ปจ๋ณผ๋ฃจ์…˜ ์‹ ๊ฒฝ๋ง(CNN)

MNIST ๋ฐ์ดํ„ฐ์…‹ - ๋ฏธ๊ตญ ๊ตญ๋ฆฝํ‘œ์ค€๊ธฐ์ˆ ์›(NIST)์ด ๊ณ ๋“ฑํ•™์ƒ๊ณผ ์ธ๊ตฌ์กฐ์‚ฌ๊ตญ ์ง์› ๋“ฑ์ด ์“ด ์†๊ธ€์”จ๋ฅผ ์ด์šฉํ•ด ๋งŒ๋“  ๋ฐ์ดํ„ฐ๋กœ ๊ตฌ์„ฑ - 70,000๊ฐœ์˜ ๊ธ€์ž ์ด๋ฏธ์ง€์— ๊ฐ๊ฐ 0๋ถ€ํ„ฐ 9๊นŒ์ง€ ์ด๋ฆ„ํ‘œ๋ฅผ ๋ถ™์ธ ๋ฐ์ดํ„ฐ์…‹ ์†๊ธ€์”จ ์ด๋ฏธ์ง€๋ฅผ ๋ช‡ %๋‚˜ ์ •ํ™•ํžˆ ๋งž์ถœ ์ˆ˜ ์žˆ๋Š”๊ฐ€? MNIST ๋ฐ์ดํ„ฐ๋Š” ์ผ€๋ผ์Šค๋ฅผ ์ด์šฉํ•ด ๋ถˆ๋Ÿฌ์˜ฌ ์ˆ˜ ์žˆ๋‹ค. mnist.load_data() ํ•จ์ˆ˜ : ์‚ฌ์šฉํ•  ๋ฐ์ดํ„ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ X : ๋ถˆ๋Ÿฌ์˜จ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ Y_class : ์ด ์ด๋ฏธ์ง€์— 0~9๊นŒ์ง€ ๋ถ™์ธ ์ด๋ฆ„ํ‘œ • ํ•™์Šต์— ์‚ฌ์šฉ๋  ๋ถ€๋ถ„: X_train, Y_class_train • ํ…Œ์ŠคํŠธ์— ์‚ฌ์šฉ๋  ๋ถ€๋ถ„: X_test, Y_class_test from keras.datasets import mnist (X_train, Y_class_train), (X_test, Y_c..

๋ฐ˜์‘ํ˜•