๋ฐ˜์‘ํ˜•

๋ฐ์ดํ„ฐ ๋ถ„์„ 16

[๋งˆ์ผ€ํŒ…์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ๋ถ„์„10] Sales Funnel Analysis, ํผ๋„ ๋ถ„์„

์•ž์„œ์„œ ๊ณต๋ถ€ํ–ˆ๋˜ ํผ๋„์„ ํ†ตํ•ด ๋ถ„์„ํ•˜๋Š” ๊ณผ์ •์ด๋‹ค. ํผ๋„์— ๋Œ€ํ•œ ๊ฐœ๋… ์„ค๋ช… : https://getacherryontop.tistory.com/83 [๋งˆ์ผ€ํŒ…์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ๋ถ„์„3-1] ๊ธฐ์ˆ ์  ๋ฐฉ๋ฒ•(ํผ๋„, Descriptive/Predictive Analytics, ROI&ROAS) Funnel (ํผ๋„) ๊น”๋Œ€๊ธฐ๋ผ๋Š” ๋œป์ด์ง€๋งŒ, ๋งˆ์ผ€ํŒ…์—์„œ๋Š” ์†Œ๋น„์ž๊ฐ€ ๊ณ ๊ฐ์ด ๋˜๋Š” ๊ณผ์ •์„ ์˜๋ฏธํ•œ๋‹ค. Sales funnel = purchase funnel - ์ƒํ’ˆ์ด๋‚˜ ์„œ๋น„์Šค์˜ ๊ตฌ๋งค๋ฅผ ํ–ฅํ•œ ์ด๋ก ์ ์ธ ๊ณ ๊ฐ ์—ฌ์ •์„ ๋ณด์—ฌ์ฃผ๋Š” ์†Œ๋น„์ž ์ค‘์‹ฌ getacherryontop.tistory.com 1. Awareness Stage ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์งˆ๋ฌธ์— ๋‹ตํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค. Q: What pages are people entering our website..

[๋งˆ์ผ€ํŒ…์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ๋ถ„์„9] ์–ดํŠธ๋ฆฌ๋ทฐ์…˜ ๋ชจ๋ธ๋ง Attribution Modeling

์–ด๋–ค ๋งค์ฒด๊ฐ€ ์†Œ๋น„์ž๊ฐ€ ๊ณ ๊ฐ์œผ๋กœ ์ „ํ™˜, ๊ตฌ๋งค์— ์–ผ๋งŒํผ ๊ธฐ์—ฌํ–ˆ๋Š”์ง€ ๋ณด๊ณ , ์„ฑ๊ณผ ์ธก์ • ๋ฐ ๋ถ„๋ฐฐ๋ฅผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ๋งˆ์ผ€ํŒ…์˜ ํšจ์œจ์„ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋งˆ์ผ€ํŒ… ์˜ˆ์‚ฐ์€ ํ•œ์ •์ ์ด๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค! ํ•œ ์‚ฌ๋žŒ์ด ๊ตฌ๋งคํ•˜๋Š” ๊ณผ์ •์„ ์‚ดํŽด๋ณด์ž. ๊ทธ ์‚ฌ๋žŒ์€ ๊ตฌ๊ธ€ํฌํ„ธ์—์„œ ๊ด‘๊ณ ๋ฅผ ๋ดค๊ณ , ๊ตฌ๊ธ€์— ๊ฒ€์ƒ‰์„ ํ•ด๋ดค๊ณ , ๋ฉ”์ผ๋กœ ์˜ค๋Š” ๊ด‘๋„๋„ ๋ณด๊ณ , ํŽ˜์ด์Šค๋ถ ๊ด‘๊ณ ๋ฅผ ๋ณด๊ณ  ๊ทธ ๋‹ค์Œ์— ๊ตฌ๋งค๋ฅผ ํ–ˆ๋‹ค๊ณ  ํ•˜์ž. ๊ณผ์—ฐ ์–ด๋–ค ๋งค์ฒด๊ฐ€ ๊ทธ์˜ ๊ตฌ๋งค ๊ฒฐ์ •์— ๊ฐ€์žฅ ํฐ ์˜ํ–ฅ์„ ๋ฏธ์ณค์„๊นŒ? ์ด์— ๋Œ€ํ•œ ๋ถ„์„ ๋ชจ๋ธ์€ ํฌ๊ฒŒ ๋‘ ์ข…๋ฅ˜๊ฐ€ ์žˆ๋‹ค. 1. Single Touch Attribution Model (Rule-based) - ์‹ฑ๊ธ€ ํ„ฐ์น˜ ์–ดํŠธ๋ฆฌ๋ทฐ์…˜ ๋ชจ๋ธ์€ ํ•œ ๋งค์ฒด์— ๋ชจ๋“  ์„ฑ๊ณผ๋ฅผ ์ธ์ •ํ•ด์ฃผ๋Š” ๋ชจ๋ธ์ด๋‹ค ์ข…๋ฅ˜ last-click, last-touch : ๋งˆ์ง€๋ง‰์œผ๋กœ ๋ณธ ๊ฑฐ๋‚˜ ํด๋ฆญํ•œ ๋งค์ฒด์—..

[๋งˆ์ผ€ํŒ…์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ๋ถ„์„8] Marketing Mix Modeling(MMM), ๋งˆ์ผ€ํŒ… ๋ฏน์Šค ๋ชจ๋ธ๋ง

Marketing Mix Modeling = Media Mix Modeling ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ํ†ต๊ณ„ ๋ถ„์„ ๋ชจ๋ธ๋กœ, ๋งˆ์ผ€ํŒ… ํ™œ๋™์˜ ๋งค์ถœ๊ณผ ROI์˜ ์ฆ๊ฐ€๋Ÿ‰์„ ์ˆ˜๋Ÿ‰ํ™”ํ•˜์—ฌ ๋ณด์—ฌ์ค€๋‹ค. ๋‹ค์–‘ํ•œ ๋ณ€์ˆ˜(๊ณผ๊ฒŒ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜)๋ฅผ ํšŒ๊ท€๋ถ„์„์„ ํ†ตํ•ด ๋ฏธ๋ž˜์˜ ์„ธ์ผ์ฆˆ๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋‹ค์–‘ํ•œ ๋งˆ์ผ€ํŒ… ์ฑ„๋„์˜ ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ตํ•˜์—ฌ ์˜ˆ์‚ฐ์ด ์ข‹์€ ์˜ํ–ฅ์„ ์ด๋Œ์–ด ๋‚ผ ์ˆ˜ ์žˆ๋Š”์ง€ ๋ณด๊ธฐ ์œ„ํ•จ์ด๋‹ค. ๊ตฌ์ฒด์ ์ธ ๋ฐฉ๋ฒ•์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. 1. ๊ฒฐ๊ณผ์— ์˜ํ–ฅ์„ ๋ฏธ์น  ๋งŒํ•œ ๋ณ€์ˆ˜๋ฅผ ๋ชจ๋‘ ์‹๋ณ„ํ•œ๋‹ค. ์ฃผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ๋ณ€์ˆ˜๋Š” ๊ธฐ๋ณธ ๋งค์ถœ(Base volume), ์ˆœ์ˆ˜ ๋งˆ์ผ€ํŒ…์œผ๋กœ ์ธํ•œ ๋งค์ถœ ์ฆ๊ฐ€๋ถ„(Incremental volume),Launches, Competition, Media and advertising, Trade promotions,Pricing, Distribution..

[๋งˆ์ผ€ํŒ…์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ๋ถ„์„7] A/B ํ…Œ์ŠคํŠธ , multi cell, nested test

NO control group , ๋ชจ๋“  ๊ทธ๋ฃน์ด ํ…Œ์ŠคํŠธ๋ฅผ ๋ฐ›๋Š”๋‹ค.์ฆ‰, ํ…Œ์ŠคํŠธ๋ฅผ ์•ˆ ๋ฐ›๋Š” ๊ทธ๋ฃน์€ ์—†๋‹ค. ๊ทธ๋ž˜์„œ ABํ…Œ์ŠคํŠธ๋ฅผ ์‚ฌ์šฉํ•œ ์ผํŽ˜์ธ์˜ ํšจ๊ณผ์— ๋Œ€ํ•œ ๊ฒฐ๋ก ์€ ๋‚ด๋ฆด ์ˆ˜ ์—†๋‹ค. ๋‹ค์–‘ํ•œ ์ „๋žต์ด ์›ํ•˜๋Š” ๊ฒฐ๊ณผ์— ์–ด๋–ค ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€ ์•Œ๊ณ  ์‹ถ์€ ๊ฒฝ์šฐ์—๋Š” ABํ…Œ์ŠคํŠธ ๊ฐ€ ์•„๋‹Œ multi cell lift tests ์•„๋‹ˆ๋ฉด nested cell tests RCT์ฒ˜๋Ÿผ ๋ฌด์ž‘์œ„์ ์ด๊ณ , ๋ฌด์ค‘๋ณต์ธ ๊ทธ๋ฃน์œผ๋กœ ๋‚˜๋ˆˆ๋‹ค. ๊ฐ ๊ทธ๋ฃน์€ ์„œ๋กœ ๋‹ค๋ฅธ ๋ฐฉ์‹์˜ test๋ฅผ ๋ฐ›๊ฒŒ ๋œ๋‹ค. ์ผ์ƒ์ ์ธ ์ตœ์ ํ™”๋ฅผ ์œ„ํ•ด ์‚ฌ์šฉ๋œ๋‹ค.(be used for day-to-day optimization) ์˜ˆ๋ฅผ ๋“ค๋ฉด, creative, bid strategies, targeting ๋“ฑ ์„œ๋กœ ๋‹ค๋ฅธ ๋งˆ์ผ€ํŒ… ์ „๋žต์„ ๋น ๋ฅด๊ฒŒ ๊ฒฐ์ •ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋งˆ์ผ€ํŒ…์— ๋งŽ์ด ์‚ฌ..

[๋งˆ์ผ€ํŒ…์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ๋ถ„์„6] ๋””์ง€ํ„ธ ๊ด‘๊ณ ์˜ ์„ฑ๊ณผ ์ธก์ • ์ง€ํ‘œ

๋””์ง€ํ„ธ ๊ด‘๊ณ ์˜ ์„ฑ๊ณผ ์ธก์ • ์ง€ํ‘œ๋Š” ํด๋ฆญ ์ˆ˜๊ฐ€ ์•„๋‹ˆ๋‹ค! ํ”ํžˆ ๋””์ง€ํ„ธ ๊ด‘๊ณ ์˜ ์„ฑ๊ณผ ์ธก์ • ์ง€ํ‘œ๋Š” ์‹คํ—˜๊ณผ ๊ด€์ธก, ๋‘ ๋ฒ”์ฃผ๋กœ ๋‚˜๋‰œ๋‹ค. 1. ์‹คํ—˜์  ๋ฐฉ๋ฒ•(experimental Methods) - ์ž˜ ๊ณ„ํš๋œ ์‹คํ—˜์„ ํ†ตํ•ด ๊ด‘๊ณ  ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด์ž ๊ด‘๊ณ ํšจ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•˜๋Š” ๊ฐ€์žฅ ์ข‹์€ ๋ฐฉ๋ฒ• ๊ฒ€์ • ๊ฐ€์„ค(test hypothesis)์€ ๋ฆฌ์„œ์น˜์—์„œ ์ž…์ฆํ•˜๊ณ  ์‹ถ์€ ๊ฒƒ์— ์ง‘์ค‘ํ•œ๋‹ค. ๊ท€๋ฌด๊ฐ€์„ค์„ ๊ธฐ๊ฐํ•˜๊ณ , ๋Œ€์•ˆ์„ ์ˆ˜์šฉํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ์—ฌ๋ถ€๋ฅผ ๊ฒ€์ •ํ•˜๋Š” ๊ฒƒ์ด ๋ชฉ์ ์ด๋‹ค. ๊ฒ€์ • ๊ฐ€์„ค์€ ๊ฐ•๋ ฅํ•œ ๊ฐ€์„ค(strong hypothesis)์ด์–ด์•ผ ํ•œ๋‹ค. ๊ฐ•๋ ฅํ•œ ๊ฐ€์„ค์€ who(audience), what(behavior of audience), why, where, when์„ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ๊ฐ€์„ค์ด๋‹ค. ์˜ˆ๋ฅผ ๋“ค๋ฉด, 35-44์„ธ ๋„ค๋œ๋ž€๋“œ์˜ ๋„์‹œ์—์„œ ์‚ด๊ณ  ์žˆ๋Š” ..

[๋งˆ์ผ€ํŒ…์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ๋ถ„์„5] ์„ ํ˜•ํšŒ๊ท€ ์˜ˆ์ธก

y=bx+a์˜ ์ง์„ ์„ ํšŒ๊ท€์‹์œผ๋กœ ํ•˜๋Š” ๋ชจ๋ธ์ด๋‹ค. (y: ์ข…์†๋ณ€์ˆ˜, dependent variable, x:๋…๋ฆฝ๋ณ€์ˆ˜, independent variable, b:ํšŒ๊ท€์„  ๊ธฐ์šธ๊ธฐ, a:์ง์„ ์˜ y์ ˆํŽธ) ๋ฐ์ดํ„ฐ๊ฐ€ ์ •๋ง ์ถ”์„ธ์„ ์ด ๋งž๋Š”์ง€์— ๋Œ€ํ•ด ๋ชจ๋ธ ๊ฒ€์ฆ - R^2(R-squared) ๊ณ„์‚ฐ(0~1์‚ฌ์ด์˜ ๊ฐ’์œผ๋กœ ํด์ˆ˜๋ก ์ ํ•ฉ๋„๊ฐ€ ๋†’๋‹ค๋Š” ์˜๋ฏธ) - P-Value ๊ณ„์‚ฐ- ๊ท€๋ฌด๊ฐ€์„ค์ด ์ฐธ์ผ ๊ฒฝ์šฐ, ๋ฐ์ดํ„ฐ๊ฐ€ ๋ฐœ์ƒํ–ˆ์„ ๊ฐ€๋Šฅ์„ฑ(๊ท€๋ฌด๊ฐ€์„ค์˜ ๋ฐœ์ƒ๊ฐ€๋Šฅ์„ฑ์ด์ง€ ์›๋ž˜ ๊ฐ€์„ค์ด ์ฐธ์ด๋ƒ๋ฅผ ๋”ฐ์ง€๋Š” ๊ฒƒ์€ ์•„๋‹˜. ์—‘์…€์—์„œ ToolPak์œผ๋กœ ๊ฒŒ์‚ฐ์ด ๊ฐ€๋Šฅ, 0.05๋ณด๋‹ค ์ž‘์œผ๋ฉด ๋ฐ์ดํ„ฐ๋Š” ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•˜๋‹ค๊ณ  ๊ฐ„์ฃผ๋จ) y=bx+a ๊ณ„์‚ฐ(n = ๋ฐ์ดํ„ฐ ์ˆ˜)

[๋งˆ์ผ€ํŒ…์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ๋ถ„์„4] ๊ณ ๊ฐ์ƒ์• ๊ฐ€์น˜ (CLTV,LTV)

customer lifetime value (CLTV,LTV) - ๊ณ ๊ฐ์ƒ์• ๊ฐ€์น˜ ์†Œ๋น„์ž์˜ ๊ธฐ๋Œ€ ์ˆ˜์ต์„ฑ, ๋ฏธ๋ž˜์ง€ํ–ฅ์ ์— ์ดˆ์  ๊ณ ๊ฐ ํ•œ ๋ช…์—๊ฒŒ ํ•ฉ๋ฆฌ์ ์œผ๋กœ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ๋Š” ์ˆ˜์ž…์˜ ๊ฐ€์น˜, ์‹ ๊ทœ ๊ณ ๊ฐ์„ ํ™•๋ณดํ•˜๊ฑฐ๋‚˜ ๊ธฐ์กด ๊ณ ๊ฐ์„ ์œ ์ง€ํ•˜๊ณ ์ž ํ•  ๋•Œ ์–ผ๋งˆ๋‚˜ ๋น„์šฉ์„ ๋“ค์ด๋Š”๊ฒŒ ์ ์ ˆํ•œ์ง€ ์„ค๋ช…ํ•œ๋‹ค. ์ฝ”ํ˜ธํŠธ๋ณ„, ๊ฐœ์ธ๋ณ„๋กœ ์‚ดํŽด๋ณด๋ฉด ๊ณ ๊ฐ, ๊ณ ๊ฐ์ง‘ํ•ฉ์ด ํšŒ์‚ฌ์— ์–ผ๋งˆ๋‚˜ ์ค‘์š”ํ•œ์ง€ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋‹ค. CLTV ๊ณ„์‚ฐ CLTV = Average value of a sale(AOV) * average number of transactions * customer retention peroid * profit margin Average value of a sale(AOV) = transaction($)/number of transactions(๊ฐœ์ธ ๊ฑฐ๋ž˜๋‚ด..

[๋งˆ์ผ€ํŒ…์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ๋ถ„์„3-1] ๊ธฐ์ˆ ์  ๋ฐฉ๋ฒ•(ํผ๋„, Descriptive/Predictive Analytics, ROI&ROAS)

Funnel (ํผ๋„) ๊น”๋Œ€๊ธฐ๋ผ๋Š” ๋œป์ด์ง€๋งŒ, ๋งˆ์ผ€ํŒ…์—์„œ๋Š” ์†Œ๋น„์ž๊ฐ€ ๊ณ ๊ฐ์ด ๋˜๋Š” ๊ณผ์ •์„ ์˜๋ฏธํ•œ๋‹ค. Sales funnel = purchase funnel - ์ƒํ’ˆ์ด๋‚˜ ์„œ๋น„์Šค์˜ ๊ตฌ๋งค๋ฅผ ํ–ฅํ•œ ์ด๋ก ์ ์ธ ๊ณ ๊ฐ ์—ฌ์ •์„ ๋ณด์—ฌ์ฃผ๋Š” ์†Œ๋น„์ž ์ค‘์‹ฌ์˜ ๋งˆ์ผ€ํŒ… ๋ชจ๋ธ 1. awareness(์ธ์‹): user๊ฐ€ ๋ธŒ๋žœ๋“œ, ์ œํ’ˆ์— ๋Œ€ํ•ด ์ธ์‹ํ•˜๊ณ  ์žˆ๋Š” ๋‹จ๊ณ„ 2. interest : understanding, discovery๋ผ๊ณ ๋„ ํ•œ๋‹ค. 3. decision : consideration์ด๋ผ๊ณ ๋„ ํ•œ๋‹ค. ๊ฒฐ์ •์„ ๋‚ด๋ฆฌ๊ธฐ ์‹œ์ž‘ํ•˜๋Š” ๋‹จ๊ณ„์ด๋‹ค. 4. Action, Sales, Conversion : ์‹ค์ œ๋กœ ๊ตฌ๋งคํ•˜๋Š” ๋‹จ๊ณ„ 5. loyalty : repurchase, ์žฌ๊ตฌ๋งคํ•˜๋Š” ๋‹จ๊ณ„์ด๋‹ค. ํผ๋„์€ ๋งˆ์ผ€ํ„ฐ์—๊ฒŒ ์žˆ์–ด์„œ ๊ณ ๊ฐ์ด ๊ตฌ๋งค/์žฌ๊ตฌ๋งคํ•˜๋Š” ์—ฌ์ •์„ ์‹œ๊ฐํ™”ํ• ..

[๋งˆ์ผ€ํŒ…์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ๋ถ„์„2] ํด๋Ÿฌ์Šคํ„ฐ๋ง์„ ํ™œ์šฉํ•œ ์„ธ๋ถ„ํ™”

ํด๋Ÿฌ์Šคํ„ฐ๋ง(Clustering)์€ ๋ฐ์ดํ„ฐ์—์„œ ํ‘œ๋ฉด์ƒ์œผ๋กœ๋Š” ์•ˆ ๋ณด์ด๋Š” ํŒจํ„ด์„ ์ฐพ์„ ์ˆ˜ ์žˆ๊ฒŒ ํ•ด์ค€๋‹ค. ์ค‘์š”ํ•œ ๊ฒƒ์€ ๋ช‡ ๊ฐœ์˜ ํด๋Ÿฌ์Šคํ„ฐ๊ฐ€ ์ƒˆ๋ถ„ํ™”๋ฅผ ์ž˜ ํ•ด๋‚ด๋Š”์ง€ ์ฐพ์•„๋‚ด๋Š” ๊ฒƒ์ด๋‹ค. ํด๋Ÿฌ์Šคํ„ฐ๋ง์˜ ๋Œ€ํ‘œ์ ์ธ ๋ฐฉ๋ฒ•์€ k-means clustering ์ด ์žˆ๋‹ค. k-means clustering - group similar data points - iterative approach (๋ฐ˜๋ณต์ ์ธ ์ ‘๊ทผ๋ฒ•) - Starting point : Randomly selected cluster centers , Variable = you're interested in (location, demographics,,,) ----> revaluate hoe good your random choice was and improve it! ๊ณผ์ • 1..

[๋งˆ์ผ€ํŒ…์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ๋ถ„์„1] ๋งˆ์ผ€ํŒ…์—์„œ์˜ ์„ธ๋ถ„ํ™”

*๋งˆ์ผ€ํŒ…์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ ๋ถ„์„ ๋ฐฉ๋ฒ•๋ก ์— ๋Œ€ํ•ด ๊ณต๋ถ€ํ•œ ๋‚ด์šฉ์„ ์ •๋ฆฌํ–ˆ์Šต๋‹ˆ๋‹ค. ์„ธ๋ถ„ํ™” segmentation - ๊ณตํ†ต๋œ ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์‚ฌ๋žŒ๋“ค์„ ๊ทธ๋ฃน๋ณ„๋กœ ๋ถ„๋ฅ˜ํ•˜๋Š” ๊ฒƒ - ํ”Œ๋žซํผ(ํŽ˜์ด์Šค๋ถ, ๊ตฌ๊ธ€,,,,)์—์„œ ํƒ€์ผ“ํŒ…ํ•˜๋Š”๋ฐ์— ์“ฐ์ผ ์ˆ˜ ์žˆ๋‹ค - ํƒ€๊ฒŸํŒ… ์ „์— ์„ธ๋ถ„ํ™” ๋จผ์ € ์ˆ˜ํ–‰ํ•ด์•ผ ํ•œ๋‹ค. ์„ธ๋ถ„ํ™”๋Š” 2๊ฐ€์ง€ ํ˜•ํƒœ๋กœ ๋‚˜ํƒ€๋‚œ๋‹ค. 1. developed from a persona - ๊ทธ ์‚ฌ๋žŒ์˜ ๊ตฌ์„ฑ์š”์†Œ์— ๋”ฐ๋ผ ๋ถ„๋ฅ˜ (๋‚˜์ด,์ง์—… ๋“ฑ) 2. developed from data analytics - k-means clustering, statistical analysis,,, ์„ธ๋ถ„ํ™”๋ฅผ ํ•˜๋Š” ์ด์œ ? - ์„ธ๋ถ„ํ™” helps us reach the right users! ์„ธ๋ถ„ํ™”์˜ ๋ณ€์ˆ˜ : demograpic(์ธ๊ตฌํ†ต๊ณ„ํ•™์ ), psychogr..

๋ฐ˜์‘ํ˜•